VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (Mech. Engg.) II Year I-Semester Old Examinations, May/June-2018

Mechanics of Materials

Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

1. State and explain Hooke's law.
2. Explain what happens if Poisson's ratio of a material is zero.
3. Define bending moment and shear force.
4. Draw the bending stress diagram of a rectangular section at support section of cantilever beam, which is subjected to a point load at the free end. Indicate tension and compression zones.
5. A rectangular beam of $200 \mathrm{~mm} \times 350 \mathrm{~mm}$ subjected to a shear force 30 kN . Find average shear stress and maximum shear stress.
6. An element is subjected to $20 \mathrm{~N} / \mathrm{mm}^{2}$ (compression) and $30 \mathrm{~N} / \mathrm{mm}^{2}$ (compression) in perpendicular directions. Determine maximum and minimum principal stresses.
7. What are the limitations of double integration method?
8. Give the boundary conditions used to determine slope and deflection in a cantilever beam of length ' L ' subjected to a point load at free end.
9. Define middle third rule and explain its importance.
10. Classify the columns based on their failure.

Part-B $(5 \times 10=50$ Marks $)$
11. a) Briefly explain thermal stress and thermal strain.
b) A short steel tube of external diameter 75 mm and internal diameter 50 mm is surrounded by a brass tube of same length and having external diameter 100 mm and internal diameter 75 mm . The tubes are rigidly fixed and an axial load of 20 kN is placed on the tubes, Find the load carried by each and also shortening of each tube, if it is 250 mm long. Take $\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{E}_{\mathrm{b}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
12. a) Define Modulus of section, Moment of resistance and Flexural rigidity.
b) A simply supported beam of length 4 m carries an U.D.L of $3 \mathrm{kN} / \mathrm{m}$ over central 2 m length and two point loads 2 kN and 3 kN at a distances 0.5 m and 3.5 m from the left support. Draw Shear force and Bending moment diagrams.
13. a) A rectangular element in a strained material is subjected to tensile stresses of $120 \mathrm{~N} / \mathrm{mm}^{2}$ and $60 \mathrm{~N} / \mathrm{mm}^{2}$ on two mutually perpendicular planes together with a shear stress of $70 \mathrm{~N} / \mathrm{mm}^{2}$. Fine the principal stresses, principal planes and maximum shear stress in the block.
b) A beam of I section top and bottom flanges $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $20 \mathrm{~mm} \times 360 \mathrm{~mm}$.

Calculate the maximum intensity of shear stress across the section and sketch the shear stress distribution across the section of the beam, if it carries a shearing force of 300 kN at a section.
14. a) Find the torque which a shaft of 100 mm diameter can transmit safely, if the shear stress is not exceeding $120 \mathrm{~N} / \mathrm{mm}^{2}$.
b) A simply supported beam of span 4 m and circular cross section is having a diameter of 200 mm is loaded with UDL $10 \mathrm{kN} / \mathrm{m}$ over a 2 m length from left support. Determine maximum deflection of the beam. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
15. a) Briefly explain the difference in analysis of thin and thick cylinders.
b) A hollow cylindrical cast iron column of 150 mm external diameter and 15 mm thickness, 3 m long and is hinged at one end and fixed at the other. Find (a) the Euler's crippling load (b) for what length, the critical load by Euler's formula will be equal, if both ends of the column are hinged.
16. a) Draw stress stain curve for mild steel. Indicate and explain the salient points.
b) A simply supported beam of length 10 m carries two UDL each of magnitude $2 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from both supports. Draw S.F. and B.M. diagrams.
17. Answer any two of the following:
a) Briefly explain graphical method of finding principal stresses, when a rectangular element subjected to normal stresses and shear stress.
b) What are the different assumptions made in torsion of circular shafts?
c) What do you mean the term limit of eccentricity? Find out the limit of eccentricity for i) a solid circular section for diameter ' D ' and (ii) for a rectangular section ($\mathrm{b} \times \mathrm{d}$).

$\cos \cos \cos 808080$

